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Abstract—The information revolution of the last decade has 
resulted in a phenomenal increase in the quantity of multimedia 
content available to an increasing number of different users with 
different preferences who access it through a plethora of devices 
and over heterogeneous networks. In order to address the 
amount of different content types, MPEG-21 Digital Item 
Adaptation (DIA) introduces interoperable description tools 
which enable coding format independent adaptation. Bandwidth-
efficient transport of the content to terminals with different 
capabilities and through a variety of access networks with 
various characteristics requires adaptation facilities not only on 
the server but also within the network. In this paper we present 
transport mechanisms for MPEG-21-based metadata enabling 
generic adaptation within the network. Three different transport 
mechanisms for delivering this metadata in conjunction with the 
corresponding multimedia content are evaluated and a payload 
format for the transport of this metadata is presented. 
Furthermore, we performed measurements which demonstrate 
the bandwidth benefits of our distributed adaptation approach 
compared to server-centric adaptation in a multicast scenario. 
Finally, we applied various encoding formats for the metadata 
which further reduces the metadata overhead.  

Keywords—MPEG-21 Digital Item Adaptation; distributed 
multimedia adaptation; metadata transport 

I.  INTRODUCTION 
In today’s multimedia content delivery architecture, 

adaptation becomes more and more important. Content 
providers aspire towards serving a plethora of heterogeneous 
end devices and networks without neglecting economical 
principles, i.e., if multiple versions of the same content are 
maintained. Therefore, a single high quality multimedia 
resource is stored on the server and adapted according to the 
usage environment on demand. The MPEG-21 Digital Item 
Adaptation (DIA) standard [1][2] specifies normative 
description tools enabling the construction of  device and 
coding-format independent adaptation engines in an 
interoperable way [3]. However, it has been argued that it is 
not realistic that a single adaptation node (or module) could 
cope with all kinds of usage environments [4]. As a 
consequence, different adaptation nodes distributed over the 
whole network could be employed, specifically for serving 
different access networks. Interoperability among these nodes 
can be guaranteed through standardized media and metadata 
formats. This requires that the metadata associated with the 

multimedia content needs to be transported to such adaptation 
nodes in order to steer the actual adaptation process there. 

In [5], an architecture for dynamic and distributed 
multimedia content adaptation in streaming environments is 
proposed which introduces some of the key concepts described 
in this paper. This paper, however, concentrates on the details 
of transporting media and metadata between adaptation nodes 
within a heterogeneous network. Thus, this paper aims to 
provide answers for the unsolved issues in [5] focusing on 
metadata transport questions. 

The remainder of this paper is organized as follows. 
Section II provides a qualitative evaluation of the possibilities 
how to transport the different types of metadata in conjunction 
with the actual multimedia content. In Section III, we propose a 
transport format for content-related metadata. Preliminary 
measurements and results can be found in Section IV and 
Section V concludes the paper.  

II. EVALUATION OF MEDIA AND METADATA TRANSPORT 
MECHANISMS 

A. Introduction 
As described in [3] three different types of information are 

required by an adaptation node located within a network: (1) 
the description of the usage environment, e.g., in terms of 
terminal and network capabilities (among others), (2) the actual 
multimedia content, and (3) its associated metadata. DIA 
specifies two types of content-related metadata used within the 
adaptation engine as described in [3] and [5]. First, the generic 
Bitstream Syntax Description (gBSD) provides means for 
describing the syntax of a bitstream independent from its 
coding format. Second, the AdaptationQoS (AQoS) description 
specifies the relationship between usage environment, possible 
adaptation operations and resulting qualities of the content. 
Both types of metadata are used to adapt the multimedia 
content independent of its actual coding format. 

The usage environment description is usually attached to 
the request for the content. In the sequel, however, we will 
concentrate on content-related metadata (gBSD and 
AdaptationQoS). In many use cases, streaming of media 
resources such as audio/video content is required, which is 
facilitated by the Real-time Transport Protocol (RTP). Due to 
its size it is unfeasible to transport the content-related metadata 
in one big chunk. Thus, it should be transported using RTP as 

1 Part of this work was supported by the European Commission in the context 
of the DANAE project (IST-1-507113); http://danae.rd.francetelecom.com 
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well, e.g., to exploit the synchronization mechanisms offered 
by RTP. However, there are still three possibilities how to 
transport these different metadata assets with the actual media 
content which are evaluated in the following: 

― One combined stream containing media and metadata. 

― One metadata stream and one media data stream. 

― Multiple metadata streams (one for each type of 
metadata) and one media data stream. 

B. Multiplexing in the Media Resources’ Stream 
Some RTP payload formats, such as the RTP payload 

format for transport of MPEG-4 Elementary Streams (RFC 
3640) provide means for including arbitrary data, e.g., 
metadata, within the auxiliary header. 

The advantages of this approach are that it is straight 
forward to implement (all the requisites are already specified) 
and that there is little processing and bandwidth overhead 
because there is only one stream to handle. Moreover there is 
no synchronization necessary between different streams, which 
reduces complexity. 

However, this approach also has several disadvantages. 
The first one is based on the assumption that metadata is more 
valuable than the media data. Metadata, specifically the 
AdaptationQoS, usually describes many media access units 
(AUs) in a single metadata access unit (MAU) and therefore a 
large segment of the stream would be affected if such a MAU 
were lost. This issue raises the need for reliable transport 
mechanisms for MAUs. While re-transmission can be used to 
fulfill this requirement, it results in the need for large buffers, 
which increases the startup delay. A better solution would be to 
reserve enough bandwidth for the metadata stream in advance, 
which is not possible with the approach of a combined stream. 
Another – maybe the biggest – disadvantage is that the 
combined stream approach depends on a specific payload 
format (e.g., RFC 3640) which provides the auxiliary header 
section where the metadata can be transported. Other payload 
formats might not provide such an auxiliary section. That is, by 
following the combined stream approach one would create a 
solution which is limited to a specific type of resource. This 
conflicts with the need for interoperability. Moreover, while 
one saves processing overhead by having only one stream, 
there is some additional overhead due to the necessary 
(de)multiplexing of the media data and the metadata. 

C. One Separate Medadata Stream 
In this scenario, the different types of metadata are 

multiplexed into one metadata stream.  

The advantages of this approach are that it allows the 
metadata stream to be treated differently from the media 
stream. This makes it possible to reserve bandwidth for the 
metadata stream in order to protect it from packet loss. 
Additionally, the transport of metadata is no longer bound to a 
specific media payload format. 

The disadvantages of this approach are the additional 
processing  overhead  caused  by  the  (de)multiplexing  of  the  

Table 1: Advantages and disadvantages of different metadata 
transport mechanisms. 

 One 
Combined 

Stream 

One 
Metadata 

Stream 

Multiple 
Metadata 
Streams 

(De-)Multiplexing Efforts High Medium Low 
(De-)Packetizing Efforts Low Medium High 

Number of Streams 1 2 3+ 
Transport Overhead Low Medium High 
Processing Overhead High Medium Low 

Synchronization Efforts Low Medium High 
Interoperability Issues Yes No No 
Protection Flexibility Low Medium High 

Asynchronous Transport No Yes (limited) Yes 
Scalability Yes (limited) Yes (limited) Yes 

metadata, the additional bandwidth overhead due to the second 
RTP stream and the necessary synchronization between the 
two streams, which increases the complexity of the 
implementation. 

D. Multiple Metadata Streams 
In this scenario, separate streams for each type of metadata 

are used, for example, one for the gBSD and one for the 
AdaptationQoS. 

In addition to the advantages listed for the approach in 
Section C this mechanism offers the possibility of handling 
each kind of metadata by specialized adaptation nodes, e.g., an 
adaptation node with special hardware for XML processing2, 
thus facilitating scalability. This is also possible for the other 
approaches, by de-multiplexing the stream(s) and then sending 
each type of metadata to the specialized adaptation nodes for 
processing. It would, however, introduce additional delay into 
the streaming chain. Another advantage lies in the possibility to 
send the AdaptationQoS and the gBSD slightly in advance 
(asynchronous transport) in order to be processed by the 
adaptation node before the media data arrives and is adapted. 
This results in lower startup delay as the adaptation node can 
more efficiently use its resources. The final advantage is that 
no metadata (de-)multiplexing is needed. 

This last advantage of course comes at the price of the 
disadvantage of high bandwidth and packetizing overhead due 
to having multiple media and metadata streams. Moreover, 
synchronization of these three streams is needed and leads to 
additional complexity. 

Table 1 summarizes the advantages and disadvantages of 
each of these possibilities. As a conclusion we will concentrate 
on the third option in the remainder of this paper. 

III. TRANSPORT FORMATS AND STRATEGIES 
In this section, we will first concentrate on the transport 

format and subsequently provide an example for it. 

A. Transport Formats 
In the following, we focus on investigating an RTP payload 

format for content-related metadata. First, the payload format is 
investigated and then the header fields which are used to signal 
information about the payload are discussed. 

2 XA35 XML Accelerator; http://www.datapower.com/products/xa35.html. 
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Figure 1: Streaming XML using BiM enables partial updates of 

the XML document (cf. highlighted nodes). 

 
Figure 2: RTP packet with MAU payload. 

1) Payload Format 
The approach illustrated in [5] requires the fragmentation of 
the content-related metadata into independent XML fragments, 
called Process Units (PUs) for the gBSD and Adaptation Units 
(ADUs) for the AdaptationQoS. We will refer to both types as 
MAUs. 

We have identified three options for the payload format of 
such MAUs. One can either transport them (1) in plain text, (2) 
compressed using a generic or an XML-aware compression 
algorithm, or (3) compressed with the MPEG-7 Binary Format 
for Metadata (BiM) [8] which allows streaming of XML-based 
data as depicted in Figure 1. While complete MAUs would be 
transmitted in the first two cases, BiM would signal a complete 
MAU only once and subsequently just the nodes which 
changed (see highlighted nodes and dotted lines in Figure 1), 
together with information on how and where to include them 
into the previously sent complete MAU. Please refer to Section 
B for an example of this approach. The transport encoding of 
the MAU is signaled using a payload specific header field. 
Independent from the encoding, each RTP packet may contain 
a fragment of an MAU, a complete MAU or many MAUs. In 
case of many MAUs, the MAU header indicates the length of 
each MAU as described in the next section. 

2) Header Fields 
Generally, the RTP header fields are used as defined in [10] 

and shown in Figure 2. The Time Stamp should be based on the 

<dia:DIA> 
 <dia:DescriptionMetadata> 
  <dia:ClassificationSchemeAlias alias="MV4" 
    href="urn:mpeg:mpeg4:video 
          :cs:syntacticalLabels"/> 
 </dia:DescriptionMetadata> 
 <dia:Description xsi:type="gBSDType" 
         bs1:bitstreamURI="akiyo.mpg4"> 
  <gBSDUnit syntacticalLabel=":MV4:VO" start="0" 
      length="18"/> 
  <gBSDUnit syntacticalLabel=":MV4:I_VOP" 
      start="18" length="4641" marker="Temporal-0"/> 
  <gBSDUnit syntacticalLabel=":MV4:P_VOP" 
      start="4659" length="98" marker="Temporal-1"/> 
  <gBSDUnit syntacticalLabel=":MV4:B_VOP" 
      start="4757" length="16" marker="Temporal-2"/> 
  <!-- ... and so on ... -->  
 </dia:Description> 
</dia:DIA> 

Document 1: VES gBSD fragment. 

same clock as the one which is used for the media content.  
Each MAU which describes a specific media segment carries 
the same Time Stamp as the first AU of that segment. If several 
MAUs describe a single AU, all MAUs carry the same Time 
Stamp as the AU. 

For the MAU header we propose the following fields. The 
MAU Header Size indicates the size of the header. The MAU 
Size indicates the size of the associated MAU. The Encoding 
Type defines the encoding of the MAU. The MAU Index 
indicates the serial number of the associated MAU. The CTS 
Flag indicates if the composition time stamp of the MAU is 
available. If so, then the CTS Delta field contains the difference 
of the composition time stamp and the RTP time stamp. This 
can be used to transmit MAU packets in a different order than 
in which they are processed, e.g., in order to enable traffic 
smoothing. The RAP Flag indicates if the current packet is a 
random access point, i.e., if it contains a complete MAU. In 
case of BiM, this is the case whenever a complete MAU is 
transmitted. The RAPs of the MAU stream should be aligned 
with the RAPs of the media stream in order to provide common 
entry points for clients which wish to join the session. 

B. Examples 
A fragment of a gBSD describing an MPEG-4 Visual 

Elementary Stream (VES) [6] which comprises the video 
object header and the first three video object planes (VOPs), is 
shown in Document 1. It also includes a marker attribute for 
each VOP which indicates its suitability for temporal scaling. 
While dropping B-VOPs is generally a good idea, dropping I- 
or P-VOPs is more problematic since other VOPs depend on 
them. 

Document 2 shows a single PU. Due to the requirement that 
a PU needs to be able to be processed independently from all 
other PUs, the PU includes all its ancestor nodes. It can also be 
seen that the start attribute is set to zero. The reason for this is 
that each PU describes a segment of the content which is 
adapted independently from the other resource segments. The 
adaptation engine has no knowledge of how many bytes of the 
resource have been adapted so far and therefore each resource 
segment (and its corresponding PU) is treated in the same way 
as a new resource.  
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<dia:DIA> 
 <dia:DescriptionMetadata> 
  <dia:ClassificationSchemeAlias alias="MV4" 
      href="urn:mpeg:mpeg4:video 
            :cs:syntacticalLabels"/> 
 </dia:DescriptionMetadata> 
 <dia:Description xsi:type="gBSDType" 
      bs1:bitstreamURI="akiyo.mpg4"> 
  <gBSDUnit syntacticalLabel=":MV4:I_VOP" start="0" 
      length="4641" marker="Temporal-0"/> 
 </dia:Description> 
</dia:DIA> 

Document 2: VES gBSD Process Unit (MAU). 

 
<FragmentUpdateUnit> 
 <FUCommand>replaceNode</FUCommand> 
 <FUContext>/dia:DIA/dia:Description/gBSDUnit 
 </FUContext> 
 <FUPayload> 
  <gBSDUnit syntacticalLabel=":MV4:I_VOP" start="0" 
      length="4641" marker="Temporal-0"/> 
 </FUPayload> 
</FragmentUpdateUnit> 

Document 3: VES gBSD transport format (using BiM, textual 
representation). 

As mentioned above, there are two options for the transport 
of the MAUs. One option is to transmit the complete MAU 
every time (cf. Document 2). The second option is the BiM 
approach which allows partial updates of the document, i.e., 
only the changes are transmitted to the adaptation node. BiM 
signals these changes using one or more so-called Fragment 
Update Units (FUUs) for each MAU. Document 3 shows a 
textual representation of such an FUU of the equivalent binary 
version for better readability. The Fragment Update Command 
(FUCommand) signals how the Fragment Update Payload 
(FUPayload) should be applied to the node referenced by the 
Fragment Update Context (FUContext). This allows for a very 
efficient signaling of MAUs, which we will evaluate in the 
following. 

IV. MEASUREMENTS AND RESULTS 
Compared to traditional server-centric adaptation, our 

proposal can offer three advantages. First, the adaptation is 
generic due to the usage of the content-related metadata. This 
allows the actual adaptation engine to be kept simple and 
efficient. Second, our approach also allows to quickly react to 
local bandwidth fluctuations, which may otherwise result in 
uncontrolled packet loss. Third, it reduces the bandwidth 
requirements in certain cases. In this section, we will take a 
look at this third characteristic. 

We assume a multicast scenario, where a number of clients 
consume the same content, either through the adaptation node 
or directly from the server as described in [5]. Up to four 
clients are considered which all consume the same content but 
with different quality and bandwidth requirements. They may 
use different access networks, for instance. It is assumed that 
the first client wants optimum quality, the second client wants 
a quality corresponding to a bandwidth reduction of 25%, the 
third client wants a quality corresponding to a bandwidth 
reduction of 50%, and the fourth client wants a quality 
corresponding to a bandwidth reduction of 75%.  

Table 2: MPEG-4 Visual Elementary Stream (VES) [6], MPEG-4 
Bit Sliced Arithmetic Coding (BSAC) [7], and Embedded Zero 
Block Coding (EZBC) [9] sample media streams. 

 Scalability Mode(s) FPS Characteristic
MPEG-4 VES Temporal (Frame Dropping) 20 352x288 Pixel 
MPEG-4 BSAC Quality (48 Levels)  25 44kbps 
EZBC Quality, Spatial, Temporal 20 176x144 Pixel 

Table 3: Sample media stream and metadata bandwidth 
requirements [kbps]. 

  
Content CRM plain 

text 
CRM 

XMLPPM 
CRM BiM 

MPEG-4 VES 86,98 63,13 37,5 6,56 
MPEG-4 BSAC 66,78 248,00 112,88 46,88 
EZBC 1313,68 694,40 58,24 55,68 

Table 4: Bandwidth requirements for traditional server-centric 
adaptation [kbps]. 

  1 Client 2 Clients 3 Clients 4 Clients
VES Server-Centric 86,98 152,22 195,71 217,46 
BSAC Server-Centric 66,78 116,87 150,26 166,96 
EZBC Server-Centric 1313,68 2298,94 2955,78 3284,2 

Table 5: Bandwidth requirements for distributed adaptation 
[kbps]. 

  Plain Text XMLPPM BiM 
VES including CRM 150,11 124,48 93,54 
BSAC including CRM 314,78 179,66 113,66 
EZBC including CRM 2008,08 1371,92 1369,36 

Three types of content are used for our measurements which 
are listed in Table 2. Table 3 shows the bandwidth 
requirements (in kbps) of the sample data, including the 
content-related metadata (CRM) in plain text, with XML-
aware XMLPPM3 compression, and using the BiM approach 
(with zLib optimized codec for strings and binary context path 
encoding enabled). 

In our measurements we will compare the bandwidth 
consumed in the server-centric approach (one stream for each 
client) and in the distributed approach. While there is one 
stream for each client in the server-centric approach, the 
distributed approach only requires one content stream and one 
content-related metadata stream between the server and the 
adaptation node. The adaptation node can then adapt the media 
in a generic way for any content quality which is asked for by 
the clients. The objective is to show for which amount of 
clients our proposal reduces the bandwidth requirements 
between the server and the adaptation node compared to 
server-centric adaptation. We will neglect the overhead of the 
transport mechanism (i.e., we are only looking at the payloads) 
and we will focus on the gBSD for the measurements. 

Table 4 and Table 5 show a comparison of the bandwidth 
requirements (in kbps) for the server-centric scenario and the 
distributed scenario. Table 4 shows the server-centric scenario 
with one stream for each client and Table 5 shows the 
distributed scenario with one media and one metadata stream 
which is coded/compressed using the three different 
approaches which were introduced above.  

The measurements on our test system show that with a 
single client, our approach always requires more bandwidth  

3 XMLPPM 0.96; http://sourceforge.net/projects/xmlppm. 

28



70
90

110
130
150
170
190
210
230

1 Client 2 Clients 3 Clients 4 Clients

kb
ps

VES Server-Centric

VES Distributed Plain Text

VES Distributed XMLPPM
VES Distributed BiM

 
Figure 3: VES bandwidth requirements. 
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Figure 4: BSAC bandwidth requirements. 

than server-centric adaptation due to the metadata overhead. 
For two or more clients, our proposal is more bandwidth 
efficient depending on the complexity of the content-related 
metadata which depends on the offered scalability modes. 

VES offers only temporal adaptation for which our 
approach is more efficient than server-centric adaptation given 
two or more clients (cf. Figure 3). EZBC offers more diverse 
adaptation possibilities but due to the high bandwidth 
requirements of EZBC streams, our approach is more 
bandwidth efficient for two or more clients (cf. Figure 5). 
BSAC offers fine grained quality which means that the 
content-related metadata needs considerable bandwidth. 
Moreover audio streams need considerable less bandwidth than 
video streams. Here our approach is more efficient than server-
centric adaptation when there are three or more clients with 
content-related metadata compressed using the BiM approach 
(cf. Figure 4).  

Generally one can say that, in terms of size, the content-
related metadata does not scale as well as media content. This 
results in considerable metadata overhead for media content 
that offers a wide range of scalability modes with low 
bandwidth requirements. For a BSAC stream with only 22 
kbps, the content-related metadata would for example still be 
the same size as for the stream in our experimental setup.  

One can also see from the measurements that the BiM 
codec performs best for compression of the content-related 
metadata. It also has the advantage of allowing to process the 
PUs in binary format, a possibility that could result in 
considerably less processing effort on the adaptation node. 

Our approach offers benefits which are not available with 
traditional server-centric adaptation. Additionally it offers an 
increased bandwidth efficiency if several clients consume the 
same content. 
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Figure 5: EZBC bandwidth requirements. 

V. CONCLUSION 
In this paper we presented a transport mechanism for content-
related metadata enabling generic distributed content 
adaptation within the multimedia delivery chain. We have 
evaluated several approaches for metadata transport in 
conjunction with the actual media data it describes. Finally, we 
provided first results demonstrating the benefits of our 
approach. 

Future work will result in a complete implementation of our 
distributed adaptation approach in the context of the DANAE 
project. It will also be investigated how our approach can be 
beneficial in unicast scenarios, e.g., with the support of caching 
mechanisms. Further research will also evaluate our approach 
in load balancing scenarios where different types of adaptations 
are conducted on distributed, specialized adaptation nodes. 
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